
Unit 12 – Tasks 2 – 4 Software
Design Report

SOPHIE MAY
9800226832

Table of Contents
Introduction ... 3

Purpose of the Program .. 3

Problem Definition .. 3

Requirements .. 4

Input Requirements .. 4

Process Requirements .. 4

Output Requirements ... 4

Business Requirements (Non-Functional Requirements) .. 4

Solutions .. 5

Bespoke Software ... 5

Off-The-Shelf Software ... 5

Customisable Software ... 5

Designs .. 6

GUI Designs... 6

Introduction ... 6

1st Design .. 6

2nd Design ... 7

Components Table for 1st Design ... 7

Components Table for 2nd Design .. 10

Navigation for 1st Design ... 12

Navigation for 2nd Design .. 13

Implemented Requirements for 1st Design ... 13

Input .. 13

Process ... 13

Output ... 13

Implemented Requirements for 2nd Design .. 13

Input .. 13

Process ... 14

Output ... 14

Data Validation for 1st Design .. 14

Data Validation for 2nd Design ... 14

Data Dictionary .. 14

Introduction ... 14

What is a variable? .. 15

Size of a variable .. 15

Processes ... 15

Store User Data ... 15

Update Exchange Rate (optional) .. 16

Find the Current Exchange Rate .. 16

Calculate Exchanged Amount .. 16

Display Result .. 16

Reset/Clear Data .. 16

Flow Chart ... 16

What is an algorithm? ... 16

What is a flowchart? .. 17

What does a flowchart show? ... 17

Why is a flowchart important in programming? ... 17

Test Plan .. 17

Justifications .. 19

Task 3 ... 20

Original Code ... 21

Test Log.. 0

Updated Code .. 0

User Interface .. 3

Altered Code .. 0

Feedback.. 0

Introduction
Planning is a very important part of any project, before beginning a project, it is important to design the
product to show any errors or alter the product so that the final product will be completed on time, and to
a high standard.

Without a design or a plan to work towards, we won’t be able progress with the project as we do not know
what we will need to create the product.

Projecting a timescale is also very important, without planning how much time we need to spend on each
area of the project to work out how much time the project will require.

Purpose of the Program
The company (a local travel agent called “Perfect getaways”), has requested a design for a currency exchange
rate calculator program, this program has been designed to convert an amount in British pounds to the
equivalent amount in a foreign currency (such as Euro, US Dollar, Bangkok Dollars etc.)

 Additionally, this program will also be able to convert foreign currency into British pounds. Once the
program has made the required/proposed calculation, the amount will be displayed on screen.

Problem Definition
A problem definition is an explanation of any issues that occur (or that may occur in the future), that must
be solved or overcome.

1) The travel agency manually works out the currency exchange by hand, so they may make
mathematical errors (human errors), which could lead to unhappy customers and loss of revenue.

2) Cannot make bookings online, the company use a dumb terminal, this is outdated and loses the
company revenue as most customers book online these days.

3) The system is outdated and is not time-efficient, so it takes longer to convert the currency which
could prove frustrating for both the customer and the employee, which could cause the company
to lose the booking.

4) Customers have said that they are not happy with the service that the travel agents company has
provided and this will most likely result in the company losing customers and revenue which will
ultimately impact their reputation and they will lose business.

5) If an employee from the company makes an error when calculating the currency exchange by hand,
the company may lose revenue, which could ultimately result in that employee losing his/her job.

Requirements
A requirement is a specified target or a condition that must be adhered to. For example, a requirement in
the specified brief (which was designed for the program) was to convert British currency into the foreign
currency equivalent. This is a non-negotiable specification that must be implemented into the programs core
design.

A ‘functional requirement’ within a program is defined as the purpose of the program, so it is the function
or action that the program executes. For example, a requirement of the program is that the program must
include an input feature to insert the required data information in order to perform the required calculation.

Input Requirements
The first input requirement is that there is a field available, to input the amount value to be exchanged.

The second input requirement is the currency type (that the program will convert the first amount into, for
example, US Dollars).

The third input requirement is the currency to exchange from (output type that the original amount
changed to, for example, Euros).

The fourth input requirement is the calculation button, to instruct the program to calculate the exchange
rate based on the (above) information given by the user.

Process Requirements
The process requirement is the calculation process itself, this is the calculation for the exchange rate,
converting the original value to the new, exchanged value.

Output Requirements
The output requirement is to display the answer of the processed calculation, in the specified answer
output field.

Another output would be to display an error message to the user if they make an error when inputting
data into the calculator.

Business Requirements (Non-Functional Requirements)
These are the requirements that the business would like to achieve in order to boost profits, improve staff
performance and reduce costs to the business. These are non-functional requirements and they include
any additional criteria that the business would like the program or system to do to aid the business.

• The currency exchange program must reduce the amount of errors made by staff during the exchange calculation
of the currency to improve the service provided to customers.

• The new program should not require the use of pens and paper, or the need for staff members to intervene with
the calculations in the program, as the formulas for the calculator must be built into the program and it must do
all the calculation work in the program.

• The program must improve customer service by reducing the wait times for the currency exchange services they
provide.

• The program must be simple and easy to use to ensure that the staff members can operate the program.

Solutions
There are three possible solutions that the client can choose from, these are bespoke software, off-the-
shelf software and customisable software.

Bespoke Software
Bespoke software is software that is tailor-made and developed for an individual user, it is designed,
developed and maintained for that users’ needs and requirements.

Advantages of this software are:

• The software is tailored to the clients’ needs and can be made to include extra features to improve
productivity and accuracy.

• Bespoke software is scalable and can be altered and changed for the client as their needs change
and their business grows.

Disadvantages of this software are:

• The software is much more expensive than off-the-shelf software.

• The software must be designed and developed from scratch so it takes time to implement this
system for the client.

Off-The-Shelf Software
Off-the-shelf software is software that is ready-made for mass production and distribution to a broad
range of customers. It cannot be altered.

Advantages of this software are:

• This software is cheaper to purchase than bespoke software.

• Off-the-shelf software is easy to use as it is designed to be used by a wider audience so it is
designed to be more user friendly than bespoke software.

Disadvantages of this software are:

• The help available is not as readily available as bespoke software which is a direct line to the
developer of the system.

• The software cannot be altered to suit the individual needs or requirements of the user.

Customisable Software
Customisable software is software that is already made but can be customised to the needs of the user. It
is a cheaper alternative to bespoke software as long as the user has the time to modify it for their
individual needs.

Designs

GUI Designs

Introduction
For the benefit of the client, I have produced two designs for the exchange rate calculator program, one is a green and dark-
grey, horizontal design and the other is a contrasting, orange and green vertical design. In this report, I have detailed the
features and components of each design.

The dark-grey and green design allows the user to enter the amount they wish to exchange into a text field, select the
currency of this amount and then select which currency they wish to change the amount into. It also comes with a clear
button to allow the user to clear all data from text fields and other exchange rate field to enter a currency exchange rate of
their choosing, this is good for updated rates and other currencies that are not listed as an option.

I plan to take the green and dark-grey design to production, as I feel this design fulfils the client’s specified requirements.
The orange and green vertical design, will be discarded as it is visually and functionally inferior to the other design, the font
is difficult to see and the colours, orange and green, are not suitable for the program as they affect its usability for the user.

1st Design

2nd Design

Components Table for 1st Design
No. Components

Type
Components

Name
Text
Type

Font
Type

Font
Colour

Font
Size

Background
Colour

1 Label:
“Currency Exchange Rate
Calculator”

This tells the user what the
purpose of the program is and
what the program is.

lblTitle String Times New
Roman

#ffffff 28pt #64a538

2 Label:
“Enter Amount”

This tells the user where they
need to input the amount
they wish to convert.

lblEnter String Times New
Roman

#ffffff 14pt N/A

3 Label:
“Select Currency From”

This tells the user that they
need to select the currency
type for the input amount
that they wish to convert.

lblFrom String Times New
Roman

#ffffff 14pt N/A

4 Label:
“Select Currency To”

lblTo String Times New
Roman

#ffffff 14pt N/A

This tells the user that they
need to select the currency
type for the output result.

A currency must be selected
in order for the program to
display the correct exchanged
amount in the output box.

5 Label:
“Other Exchange Rate”

This tells the user that they
can enter a specific numerical
value into this box text field in
order to alter/update the
calculation process in order to
calculate a specific rate.

lblOther String Times New
Roman

#ffffff 14pt N/A

6 Label:
“Result”

This tells the user the amount
that has been exchanged and
where the resulting output
amount is to be displayed.

lblResult String Times New
Roman

#ffffff 14pt N/A

7 Label:
“Calculate”

This tells the user to press this
button in order to start the
calculation process.

lblCalculate String Times New
Roman

#181717 14pt N/A

8 Label:
“Clear”

This tells the user to press the
button in order to clear the
text field data.

lblClear String Times New
Roman

#181717 14pt N/A

9 Button:
“Calculate”

User presses the button and it
triggers the assigned response
(calculation process).

btnCalc N/A Times New
Roman

N/A 14pt #64a538

10 Button:
“Clear”

User presses this button and it
triggers the assigned response
(removes data from text
fields).

btnClear N/A Times New
Roman

N/A 14pt #d0cece

11 Messsage Box: Error Message
Box

msgError String Times New
Roman

#181717 14pt #ffffff

This is a pop up error message
box to display a message to
the user when an incorrect
data type error has occurred
(only appears when the
calculation button is pressed).

12 Text Box: Enter Amount (Input
field)

This is used to enter the
original amount/number data
for the calculation.

txtAmount Number Times New
Roman

#181717 14pt #ffffff

13 Text Box: Other Exchange
Rate (Alternative Currency
Rate field)

This is used to enter another
currency format for the
calculation and can be used
for either the currency to be
exchanged from a certain type
or the currency to be
exchanged to a new currency
type.

txtOther Number Times New
Roman

#181717 14pt #ffffff

14 Text Box: Result (Output field)

This is to allow the program to
generate the
exchanged/converted amount
to display to the user (once
the calculation process is
complete).

txtOuput Number Times New
Roman

#181717 14pt #ffffff

15 Combo-box: Select Currency
From

This is a drop-down list of
currency types (Euro, GBP,
USD, AUD, Other) for the user
to select to specify which
currency they wish to convert
from.

cmbFrom String Times New
Roman

#181717 14pt #ffffff

16 Combo-box: Select Currency
To
This will drop down list to
select a

This is a drop-down list of
currency types (Euro, GBP,
USD, AUD, Other) for the user
to select to specify which
currency they wish to convert
to.

cmbTo String Times New
Roman

#181717 14pt #ffffff

17 Background N/A N/A N/A N/A N/A #595959

 This is the main background
screen (dark grey).

Components Table for 2nd Design
No. Components

Type
Components

Name
Text
Type

Font
Type

Font Colour Font
Size

Background
Colour

1 Label:
“Calculator”

This tells the user what the
purpose of the program is
and what the program is.

lblTitle String Harlow
Solid Italic

#9c813 28pt #ED7D31

2 Label:
“Amount”

This tells the user where
they need to input the
amount they wish to
convert.

lblEnter String Algerian #of18oa 14pt N/A

3 Label:
“Currency”

This tells the user that they
need to select the currency
type for the input amount
that they wish to convert.

lblFrom String Algerian #of18oa 14pt N/A

4 Label:
“Currency”

This tells the user that they
need to select the currency
type for the output result.

A currency must be
selected in order for the
program to display the
correct exchanged amount
in the output box.

lblTo String Algerian #of18oa 14pt N/A

5 Label:
“Other Exchange Rate”

This tells the user that they
can enter a specific
numerical value into this
box text field in order to
alter/update the
calculation process in
order to calculate a
specific rate.

lblOther String Algerian #of18oa 14pt N/A

6 Label:
“Output”

This tells the user the
amount that has been
exchanged and where the
resulting output amount is
to be displayed.

lblResult String Algerian #of18oa 14pt N/A

7 Label:
“Calculate”

This tells the user to press
this button in order to
start the calculation
process.

lblCalculate String Calibri
(Body)

#5e943a 18pt N/A

8 Label:
“Clear”

This tells the user to press
the button in order to clear
the text field data.

lblClear String Calibri
(Body)

#5e943a 18pt N/A

9 Button:
“Calculate”

User presses the button
and it triggers the assigned
response (calculation
process).

btnBlue N/A Calibri
(Body)

N/A 18pt #6bae3e

10 Button:
“Clear”

User presses this button
and it triggers the assigned
response (removes data
from text fields).

lblClear N/A Calibri
(Body)

N/A 18pt #6bae3e

11 Text Box: Amount (Input
field)

This is used to enter the
original amount/number
data for the calculation.

txtInput Number Times New
Roman

#ffffff 18pt #ed7d31

12 Text Box: Other Exchange
Rate (Alternative Currency
Rate field)

This is used to enter
another currency format
for the calculation and can
be used for either the
currency to be exchanged
from a certain type or the

txtOther Number Times New
Roman

#ffffff 18pt #ed7d31

currency to be exchanged
to a new currency type.

13 Text Box: Output field

This is to allow the
program to generate the
exchanged/converted
amount to display to the
user (once the calculation
process is complete).

txtOuput Number Times New
Roman

#ffffff 18pt #ed7d31

14 Combo-box: Currency

This is a drop-down list of
currency types (Euro, GBP,
USD, AUD, Other) for the
user to select to specify
which currency they wish
to convert from.

cmbFrom String Times New
Roman

#ffffff 18pt #ed7d31

15 Combo-box: Currency
This will drop down list to
select a

This is a drop-down list of
currency types (Euro, GBP,
USD, AUD, Other) for the
user to select to specify
which currency they wish
to convert to.

cmbTo String Times New
Roman

#ffffff 18pt #ed7d31

16 Foreground

 This is the main
background screen
(green).

N/A N/A N/A N/A N/A #70AD47

16 Background

 This is the outside
background screen (black).

N/A N/A N/A N/A N/A #333333

Navigation for 1st Design
First you must enter the amount you wish to exchange, into the “Enter Amount” text field. This data must be written in
numerical format (e.g. 50.00). You must then select the “Select Currency From” selection field and select the type of
currency that you wish to exchange from (e.g. GBP). Then you must select the type of currency you wish to change this
amount into (e.g. AUD), this is in the “Select Currency To” selection field.

Optionally, you can enter a decimal exchange rate for the program to calculate with instead of the options provided in the
currency selection fields. This can be used for a specific currency rate or for updated currency rates. Simply select the “other”
option in the “Select Currency To” field and enter the rate into the “other exchange rate” field. Select the “Calculate” button

to calculate the result. The result will then be displayed in the “Result” field. To clear all/any data entered into this program,
you can select the “Clear” button, which will reset the program to allow the user to use the program again.

Navigation for 2nd Design
First you must enter the amount you wish to exchange, into the “Amount” text field. This data must be written in numerical
format (e.g. 50.00). You must then select the “currency” selection field and select the type of currency that you wish to
exchange from (e.g. GBP). Then you must select the type of currency you wish to change this amount into (e.g. AUD).

Optionally, you can enter a decimal exchange rate for the program to calculate with instead of the options provided in the
currency selection fields. This can be used for a specific currency rate or for updated currency rates. Simply select the “other”
option in the currency to be exchanged field and enter the rate into the other exchange rate section. Select the calculate
button to calculate the result. The result will then be displayed in the output field.

Implemented Requirements for 1st Design
Input
Requirement to input amount was implemented using a text field with a label to tell the user what to do.

Requirement to input currency type from was implemented using a text field with a label to tell the user what to do

Requirement to input currency type to was implemented using a text field with a label to tell the user what to do.

Requirement to instruct program to calculate the exchange rate was implemented by a button with a label to tell the user
what to do.

Requirement to input alternative exchange rate was implemented using a text field with a label to tell the user what to do.

Process
Requirement to process the exchange rate calculation was implemented using a calculation button with a label to tell the
program to calculate and process the data entered by the user.

Output
Requirement to output the result of the processed calculation in the specified answer output field was implemented using
a text field with a label to tell the user what to do.

Requirement to output/display the error message to the user was implemented using a message pop-up box with
instructions/error message upon clicking the calculate button.

Requirement to output the clear/reset action for all the data field boxes in the program was implemented using a button
with a “clear” label to tell the user what to do.

Implemented Requirements for 2nd Design
Input
Requirement to input amount was implemented using a text field with a label to tell the user what to do.

Requirement to input currency type from was implemented using a text field with a label to tell the user what to do

Requirement to input currency type to was implemented using a text field with a label to tell the user what to do.

Requirement to instruct program to calculate the exchange rate was implemented by a button with a label to tell the user
what to do.

Requirement to input alternative exchange rate was implemented using a text field with a label to tell the user what to do.

Process
Requirement to process the exchange rate calculation was implemented using a calculation button with a label to tell the
program to calculate and process the data entered by the user.

Output
Requirement to output the result of the processed calculation in the specified answer output field was implemented using
a text field with a label to tell the user what to do.

Requirement to output/display the error message to the user was implemented using a message pop-up box with
instructions/error message upon clicking the calculate button.

Data Validation for 1st Design
In the enter amount text field, only number data can be entered, and the calculator will produce a pop-up error message
box to the user if the data is written in any other format.

In the other exchange rate text field, only number data can be entered, and the calculator will produce a pop-up error
message box to the user if the data is written in any other format.

In the select currency from selection box, a currency must be selected from this selection list, if no currency type is selected
then the calculator will produce a pop-up error message box to the user if the data has not been selected.

In the select currency to selection box, a currency must be selected from this selection list, if no currency type is selected
then the calculator will produce a pop-up error message box to the user if the data has not been selected.

Data Validation for 2nd Design
In the amount text field, only number data can be entered, and the calculator will produce a pop-up error message box to
the user if the data is written in any other format.

In the other exchange rate text field, only number data can be entered, and the calculator will produce a pop-up error
message box to the user if the data is written in any other format.

In the select currency selection box, a currency must be selected from this selection list, if no currency type is selected
then the calculator will produce a pop-up error message box to the user if the data has not been selected.

In the select currency selection box, a currency must be selected from this selection list, if no currency type is selected
then the calculator will produce a pop-up error message box to the user if the data has not been selected.

Data Dictionary
Introduction
A data dictionary contains a list of variables that will be used to to store the data that the user will input for the program
to calculate. This data dictionary shows what each variable is and what the size of the variables are. This dictionary
contains all the data types used within the program I plan to create.

What is a variable?
Data is stored and referenced using a variable (which can be thought of as a container). A variable is used to store
information, which, can be used as a reference to allow the program to carry out certain functions and commands.
Variables can be changed and altered depending on the set conditions or information stored within a program.

Size of a variable
A data type dictates how large or small the variable will be. We use different sized variables for storing different types of
data, such as a field having a minimum or maximum character entered in a text field.

Boolean – This data type is for true or false statements and holds 1 byte.

Decimal – This data type is used for storing money and holds 8 bytes.

String – This data type is used for storing letters (depending on the number of characters) and holds 2 bytes per letter.

Integer – This data type is used for storing whole numbers and holds 2 bytes.

Variable Data Type Use Size
enterAmount Decimal Storing amount to

convert/exchange
8 bytes

otherExchange Decimal Storing alternative
exchange rate to exchange
from or into.

8 bytes

outputResult Decimal Storing the result/answer. 8 bytes
currencyFrom String Storing the

letters/characters/text for
the currency (AUD, Euro,
GBP), for the entered
amount.

2 bytes per letter

currencyTo String Storing the
letters/characters/text for
the currency (AUD, Euro,
GBP) for the program to
convert the entered
amount into.

2 bytes per letter

messageError String Pop up display text that
states when the user has
made an error, used for
storing letters, characters,
text.

2 bytes per letter

Processes

Store User Data
• Amount to be exchanged
• Type of currency to exchange from
• Type of currency to exchange to
• (Optional) Other/alternative exchange rate

This process will store input data from the user into the program. It will store the amount to be exchanged,
the type of currency to exchange from, the type of currency to exchange to and an optional process of
other/alternative exchange rate to be exchanged from or to.

Update Exchange Rate (optional)
• (Optional) Other/alternative exchange rate
• Type of currency to exchange from (other)
• Type of currency to exchange to (other)

This process is only to be used when the user needs an alternative or updated exchange rate to the
selection offered to the user under the type of currency to be exchanged from and to selection fields. The
user can enter this data (an updated exchange rate or an alternative exchange rate), in the “Other
Exchange Rate” text field and this data will then be stored and used within the program’s calculation
process. This will over-ride any existing calculation settings stored within the program for the stored
currency values. The program will then use this entered rate to calculate the new exchange rate.

Find the Current Exchange Rate
• (Optional) Other/alternative exchange rate
• Type of currency to exchange from (other)
• Type of currency to exchange to (other)

This process is only to be used when the user needs an alternative or updated exchange rate to the
selection offered to the user under the type of currency to be exchanged from and to selection fields. The
user can enter this data (an updated exchange rate or an alternative exchange rate), in the “Other
Exchange Rate” text field and this data will then be stored and used within the program’s calculation
process. This will over-ride any existing calculation settings stored within the program for the stored
currency values. The program will then use this entered rate to calculate the new exchange rate.

Calculate Exchanged Amount
This exchanged amount will be calculated using the data entered into the program by the user. Once this
data has been sent for processing (when the user presses the calculate button), the program will calculate
the amount to be exchanged multiplied by the currency rate to be exchanged into.

The program will use the amount to be exchanged, the currency type to be exchanged from and the
currency type to be exchanged to calculate the end result.

Display Result
This process will display the result to the user.

Reset/Clear Data
The clear button will clear all the data fields containing data and will reset the programming ready for use.

Flow Chart
What is an algorithm?
An algorithm is a list of step-by-step instructions that, when followed, will solve a problem. The two main
techniques for producing an algorithm are pseudo-code and flowcharts.

What is a flowchart?
A flowchart is a diagram that shows the breakdown of a task or a system into steps. A flowchart is made-up
of a series of symbols with connecting arrows to show the steps in an algorithm to achieve an end goal.

What does a flowchart show?
A flowchart shows a step-by-step diagram of the tasks taken to achieve an end goal.

Why is a flowchart important in programming?
A flowchart is important and is often used to show prospective clients/employers how a program is going
to operate. A flowchart is easy to understand and allows the client/employer to understand and make
alterations to the program just by looking at the flowchart.

Test Plan
A test plan is a table that lists all the tests that the program needs to pass in order to be ready to use. A test plan will
record a list of tests to be carried out, the expectations of the developer when each test is carried out and it can also
record the actual data from the tests.

Test
No.

Test Description Test Data Expected Result Actual
Result

Screenshots

1 Program loads – Open the
program and the program
should load without issue.

None The program should load
without issue.

2 Check that you can enter
decimal data into “Enter

Amount” text field.

Decimal
Data/Numbers

The text field should allow the
user to enter numbers into
the “Enter Amount” field.

3 Check that the user can select a
“Currency From” in the combo

box.

String data
(eg GBP)

That the user can select any
currency from the combo box.

4 Check that the user can select a
“Currency To” in the combo

box.

String data
(eg Euro)

That the user can select any
currency from the combo box.

5 Check that exchange rate
works.

GBP to Euro
Amount £10
10* 1.143 =

11.43

That €11.43 is the
answer/result.

6 Check that exchange rate
works.

Euro to GBP
Amount €10

10* 0.875 = 8.75

That £8.75 is the
answer/result.

7 Check that exchange rate
works.

GBP to AUD
Amount £10
10* 1.835 =

18.35

That $18.35 is the
answer/result.

8 Check that exchange rate
works.

AUD to GBP
Amount $10

10* 0.545 = 5.45

That £5.45 is the
answer/result.

9 Check that exchange rate
works.

GBP to USD
Amount £10
10* 1.398 =

13.98

That $13.98 is the
answer/result.

10 Check that exchange rate
works.

USD to GBP
Amount $10

10* 0.715 = 7.15

That £7.15 is the
answer/result.

11 Check invalid user input. Invalid data If a letter is typed into a text
field that only allows

decimal/number data, the
program will display an error

message.

12 Updated/other exchange rate. GBP to Other
(1.52). Amount is

£10 * 1.52 =
15.20

The calculation should store
the updated/other exchange

rate into the program to
perform the calculation, the

result of this example is 15.20.

Justifications
The two designs that have been produced are polar opposites and couldn’t be more different. On the
design that has been chosen, the colours have a fairly urban theme, and consist of a dark-grey background
with white font, white text boxes with accents of a playful green shade on the title and calculator button.

The use of white as the font colour allows the text to stand out clearly against the dark-grey and green
background colours, this allows the user to clearly read the text due to the good contrast between the
colours. The selected font styles and sizes also reinforce this key requirement in the design, as it increases
the programs accessibility and overall usability for the user.

The level of detail in the chosen design allows the client to envision the end product, and labels have been
used within the design to clearly demonstrate the features of the program to the client. The client has
requested that the program is able to exchange currencies from GBP to at least three other foreign
currencies and must be able to alter the exchange rate to updated rates, this design has been created to
fulfil these needs and contains additional features such as a clear button and an error message box.

The design that has been selected for production has a horizontal layout, which has been created to aid
usability as the program’s layout follows the natural movement of the human eye (left to right) with
minimal effort.

On the alternative design, the colours clash, neon orange and a sickly shade of green jump out at the user
and make it difficult for the user to look at. The title’s font colour blends in with the vibrant orange
background, so the user cannot read the title. The choice of font style, colour and size all make it extremely
difficult for the average user to read (or even see), which does not bode well for anyone with visual
impairments.

The layout of the alternative design is vertical and feels uncomfortable to look at, this is due to the way
people read (from left to right, top to bottom) which means that vertical layout seems unnatural and
inconvenient to the human eye. Therefore, once a user open’s this program and looks at how illogical the
layout of the program is, it is very likely that they will not like the design from a visual perspective and opt
for another program.

Another major flaw with the second design is the lack of an error message pop-up box, the program must
contain this as part of the client’s requirements and if this aspect is not fulfilled the client may choose
another company to develop the program (as their needs will have not been met).

Overall, the selected grey, white and green design is clearly the superior choice and does indeed fit with
the requirements stated by the client during the briefing, and with the support and approval of the client,
we plan to see the design through to production.

Task 3

Original Code

public partial class Form1 : Form
 {
 //A variable is a container which stores data.

 //Here I have declared a variable called currencyFrom and set it as a string datatype with
speech marks.
 //This variable will hold and store the data from the currencyFrom combo-box for the program
to retrieve later on.
 string currencyFrom = "";

 //Here I have declared a variable called currencyTo and set it as a string datatype with
speech marks.
 //This variable will hold and store the data from the currencyTo combo-box for the program
to retrieve later on.
 string currencyTo = "";

 //Here I have declared a variable called amount and set it as a decimal datatype and set it
to 0.
 //This variable will hold and store the data from the amount textbox for the program to
retrieve later on.
 decimal amount = 0;

 //Here I have declared a variable called exchangeRate and set it as a decimal datatype and
set it to 0.
 //This variable will hold and store the data from the other exchange rate textbox for the
program to retrieve later on.
 decimal exchangeRate = 0;

 //Here I have declared a variable called result and set it as a decimal datatype and set it
to 0.
 //This variable will output the calculation result to the result textbox for the program to
display to the user.
 decimal result = 0;

 // An array is a data structure, which can store a fixed-size collection of elements of the
same data type.
 //An array is used to store a collection of data.
 //Here I have declared the array for my currency rates.
 //To allow the program to retrieve the data assigned to the currency to and from.
 //We use an array to store a collection of data so that it can be accessed or retrieved by
the program.
 private string[,] rateArray =
 {
 { "GBP", "USD", "1.34" },
 { "USD", "GBP", "0.75" },
 { "GBP", "EURO", "1.14" },
 { "EURO", "GBP", "0.88" },
 { "GBP", "AUD", "1.75" },
 { "AUD", "GBP", "0.57" }};

 public Form1()
 {
 InitializeComponent();
 }

 private void label6_Click(object sender, EventArgs e)
 {

 }

 private void btnCalc_Click(object sender, EventArgs e)
 {
 //This is the code to trigger an action once the calculate button is clicked.
 //This will trigger the method called storeData to run.
 //The button is used to trigger an action in order to get the program to do something.
 //In this case the method storeData is used to store the data that has been entered by
the user.
 //This will then trigger the chkRate method calculation process of the program.
 storeData();
 }

 public void storeData()
 {
 //This gets the data from the combo-box for the currency from.
 //And sets /stores it in the variable for the currency from.
 currencyFrom = cmbFrom.Text;

 //This gets the data from the combo-box for the currency To.
 //And sets /stores it in the variable for the currency To.
 currencyTo = cmbTo.Text;

 //This gets the amount entered in by the user and stores it into the variable amount.
 amount = Convert.ToDecimal(txtEnter.Text);

 //This will trigger the method chkRate to run.
 chkRate();
 }

 public void chkRate()
 {
 //This is an if statement which tells the program that if the string (txtExchangeRate),
 //is null or empty, then the following conditions will be carried out.
 //A string is null if it has not been assigned a value.
 //A string is empty if it is explicitly assigned an empty string ("") or String.Empty.
 if (!string.IsNullOrEmpty(txtExchangeRate.Text))
 {
 //This converts the value of the data into a decimal datatype.
 exchangeRate = Convert.ToDecimal(txtExchangeRate.Text);

 //This triggers the updateRate method to run.
 updateRate();
 }
 //This is an else statement which tells the program what to do if the if statement
criteria has not been met.
 else
 {
 //This triggers the findExchangeRate method to run.
 findExchangeRate();
 }
 }

 public void updateRate()
 {
 //Here I have declared a variable called count within the updateRate method.
 //The variable has a datatype of int (meaning integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count, 0]) && (currencyTo.Equals(rateArray[count,
1])))
 {
 //Stores the exchange rate variable into the array.
 rateArray[count, 0] = exchangeRate.ToString();
 break;

 }
 //Increment count value by 1.
 count =(count + 1);

 //Triggers the calculate method to run.
 calculate();
 }
 }

 public void findExchangeRate()
 {
 //Here I have declared a variable called count within the findExchangeRate method.
 //The variable has a datatype of int (meaning integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count, 0]) && (currencyTo.Equals(rateArray[count,
1])))
 {

 exchangeRate = Convert.ToDecimal(0);

 //Converts one datatype into another datatype.
 exchangeRate = Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

 public void calculate()
 {
 //Multiply the amount by the exchangeRate and display the answer in the result variable.
 result = amount * exchangeRate;

 //Trigger the calculate method to run.
 display();
 }

 public void display()
 {
 txtResult.Text = result.ToString();
 }

 private void btnClear_Click(object sender, EventArgs e)
 {

 }

 private void cmbFrom_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 private void cmbTo_SelectedIndexChanged(object sender, EventArgs e)
 {

 }
 }

Test Log
Test
No.

Test Description Test Data Expected Result Actual Result Screenshots

1 Program loads – Open
the program and the
program should load

without issue.

None The program should load
without issue.

The program loaded
without any issues.

2 Check that you can

enter decimal data into
“Enter Amount” text

field.

Decimal
Data/Numbers

The text field should allow
the user to enter numbers
into the “Enter Amount”

field.

The “Enter Amount” text
field allowed me to enter

in the decimal data.

3 Check that the user can
select a “Currency

From” in the combo
box.

String data
(e.g. GBP)

That the user can select
any currency from the

combo box.

The combo selection box
for currency from,

allowed me to select
from a drop down list of
four possible currencies
(AUD, EURO, GBP, USD),

as it is supposed to.

4 Check that the user can

select a “Currency To”
in the combo box.

String data
(eg Euro)

That the user can select
any currency from the

combo box.

The combo selection box
for currency to, allowed
me to select from a drop
down list of four possible
currencies (AUD, EURO,

GBP, USD), as it is
supposed to.

5 Check that exchange
rate works.

GBP to Euro
Amount £10

10* 1.14 = 11.40

That €11.40 is the
answer/result.

The program is crashing
when I press the
calculate button.

5.1 Check that exchange

rate works.
GBP to Euro
Amount £10

10* 1.14 = 11.40

That €11.40 is the
answer/result.

Before:
The program is crashing

when I press the
calculate button.

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {

 exchangeRate = Convert.ToDecimal(0);

 //Converts one datatype into another
datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

After:

Here is the code after I
altered it. I changed the
(txtExchangeRate.Text)
to (rateArray[count, 2]),

this stopped the program
from crashing but it

didn’t fix the problem as
the result is still not

displaying.

After
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Converts one datatype into another
datatype.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

5.2 Check that exchange
rate works.

GBP to Euro
Amount £10

10* 1.14 = 11.40

That €11.40 is the
answer/result.

Before:
Here is the code after I
altered it. I changed the
(txtExchangeRate.Text)
to (rateArray[count, 2]),

this stopped the program
from crashing but it

didn’t fix the problem as
the result is still not

displaying.

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.

 After:
Here is the code after I

altered it. I declared the
calculate variable at the

bottom of the code
which runs the

calculation method and
then also runs the display
method which fixes the

issue of the program not
displaying the answer.
The program is adding

extra zeros to the answer
but the answer is still

correct.

 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

After

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();
}

6 Check that exchange
rate works.

Euro to GBP
Amount €10

10* 0.88 = 8.88

That £8.88 is the
answer/result.

The program is crashing
when I press the
calculate button.

6.1 Check that exchange
rate works.

Euro to GBP
Amount €10

10* 0.88 = 8.88

That £8.88 is the
answer/result.

Before:
The program is crashing

when I press the
calculate button.

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {

After:
Here is the code after I

altered it. I declared the
calculate variable at the

bottom of the code
which runs the

calculation method and
then also runs the display
method which fixes the

issue of the program not
displaying the answer.
The program is adding

extra zeros to the answer
but the answer is still

correct.

 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

After

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }

 count = (count + 1);
 }
 calculate();
}

7 Check that exchange
rate works.

GBP to AUD
Amount £10

10* 1.75 = 17.50

That $17.50 is the
answer/result.

The program is crashing
when I press the
calculate button.

7.1 Check that exchange

rate works.
GBP to AUD
Amount £10

10* 1.75 = 17.50

That $17.50 is the
answer/result.

Before:
The program is crashing

when I press the
calculate button.

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.

After:

Here is the code after I
altered it. I declared the
calculate variable at the

bottom of the code
which runs the

calculation method and
then also runs the display
method which fixes the

issue of the program not
displaying the answer.
The program is adding

extra zeros to the answer
but the answer is still

correct.

 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

After

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).

 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();
}

8 Check that exchange
rate works.

AUD to GBP
Amount $10

10* 0.57 = 5.70

That £5.70 is the
answer/result.

The program is crashing
when I press the
calculate button.

8.1 Check that exchange
rate works.

AUD to GBP
Amount $10

10* 0.57 = 5.70

That £5.70 is the
answer/result.

Before:
The program is crashing

when I press the
calculate button.

After:
Here is the code after I

altered it. I declared the
calculate variable at the

bottom of the code
which runs the

calculation method and
then also runs the display

method. However, the
answer is now displaying
as 0.00 instead of £5.70.

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

After

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {

 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();
}

8.2 Check that exchange
rate works.

AUD to GBP
Amount $10

10* 0.57 = 5.70

That £5.70 is the
answer/result.

Before:
I altered the code but it

still would not display the
correct answer for an

exchange from AUD to
GBP.

Before

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {

After:

 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();
}

After
public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count <= rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);

 }
 calculate();

 }

9 Check that exchange

rate works.

GBP to USD
Amount £10

10* 1.34 = 13.40

That $13.40 is the
answer/result.

The program is crashing
when I press the
calculate button.

9.1 Check that exchange

rate works.

GBP to USD
Amount £10

10* 1.34 = 13.40

That $13.40 is the
answer/result.

Before:
The program is crashing

when I press the
calculate button.

After:

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

Here is the code after I
altered it. I declared the
calculate variable at the

bottom of the code
which runs the

calculation method and
then also runs the display
method which fixes the

issue of the program not
displaying the answer.
The program is adding

extra zeros to the answer
but the answer is still

correct.

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

After

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();
}

10 Check that exchange
rate works.

USD to GBP
Amount $10

10* 0.75 = 7.5

That £7.50 is the
answer/result.

The program is crashing
when I press the
calculate button.

10.1 Check that exchange

rate works.
USD to GBP
Amount $10

10* 0.75 = 7.5

That £7.50 is the
answer/result.

Before:
The program is crashing

when I press the
calculate button.

Before
 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.

After:
Here is the code after I

altered it. I declared the
calculate variable at the

bottom of the code
which runs the

calculation method and
then also runs the display
method which fixes the

issue of the program not
displaying the answer.
The program is adding

extra zeros to the answer
but the answer is still

correct.

 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 }

After

 public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int (meaning
integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count,
0]) && (currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the array
using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).

 //It then stores it in the variable
for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();
}

11 Check invalid user
input.

Invalid data If a letter is typed into a
text field that only allows
decimal/number data, the

program will display an
error message.

The program crashes and
does not display an error

message.

11.1 Check invalid user
input.

Invalid data If a letter is typed into a
text field that only allows
decimal/number data, the

program will display an
error message.

Before:
The program crashes and
does not display an error

message.

After:
I altered the code to
include a try/catch

statement which also
includes a message in a

pop-up message box. The
message says “Invalid

user input”.

Before
 public void storeData()
 {

 //This gets the data from the combo-box for
the currency from.
 //And sets /stores it in the variable for the
currency from.
 currencyFrom = cmbFrom.Text;

 //This gets the data from the combo-box for
the currency To.
 //And sets /stores it in the variable for the
currency To.
 currencyTo = cmbTo.Text;

 //This gets the amount entered in by the user
and stores it into the variable amount.
 amount = Convert.ToDecimal(txtEnter.Text);

 //This will trigger the method chkRate to
run.
 chkRate();

 }

After
 public void storeData()
 {
 try
 {

 //This gets the data from the combo-box
for the currency from.
 //And sets /stores it in the variable for
the currency from.
 currencyFrom = cmbFrom.Text;

 //This gets the data from the combo-box
for the currency To.

 //And sets /stores it in the variable for
the currency To.
 currencyTo = cmbTo.Text;

 //This gets the amount entered in by the
user and stores it into the variable amount.
 amount =
Convert.ToDecimal(txtEnter.Text);

 //This will trigger the method chkRate to
run.
 chkRate();
 }
 catch (Exception e)
 {

 MessageBox.Show("Invald user input");
 }

 }

12 Updated/other
exchange rate.

GBP to Other
(1.52). Amount is

£10 * 1.52 =
15.20

The calculation should
store the updated/other
exchange rate into the

program to perform the
calculation, the result of

this example is 15.20.

The exchange rate box
does work, but it is
adding on too many

zeros which are
unnecessary.

Updated Code

namespace Currency_Exchange_Calculator
{
 public partial class Form1 : Form
 {
 //A variable is a container which stores data.

 //Here I have declared a variable called currencyFrom and set it as a string datatype with
speech marks.
 //This variable will hold and store the data from the currencyFrom combo-box for the program
to retrieve later on.
 string currencyFrom = "";

 //Here I have declared a variable called currencyTo and set it as a string datatype with
speech marks.
 //This variable will hold and store the data from the currencyTo combo-box for the program
to retrieve later on.
 string currencyTo = "";

 //Here I have declared a variable called amount and set it as a decimal datatype and set it
to 0.
 //This variable will hold and store the data from the amount textbox for the program to
retrieve later on.
 decimal amount = 0;

 //Here I have declared a variable called exchangeRate and set it as a decimal datatype and
set it to 0.
 //This variable will hold and store the data from the other exchange rate textbox for the
program to retrieve later on.
 decimal exchangeRate = 0;

 //Here I have declared a variable called result and set it as a decimal datatype and set it
to 0.
 //This variable will output the calculation result to the result textbox for the program to
display to the user.
 decimal result = 0;

 // An array is a data structure, which can store a fixed-size collection of elements of the
same data type.
 //An array is used to store a collection of data.
 //Here I have declared the array for my currency rates.
 //To allow the program to retrieve the data assigned to the currency to and from.
 //We use an array to store a collection of data so that it can be accessed or retrieved by
the program.
 private string[,] rateArray =
 {
 { "GBP", "USD", "1.34" },
 { "USD", "GBP", "0.75" },
 { "GBP", "EURO", "1.14" },
 { "EURO", "GBP", "0.88" },
 { "GBP", "AUD", "1.75" },
 { "AUD", "GBP", "0.57" }};

 public Form1()
 {
 InitializeComponent();
 }

 private void label6_Click(object sender, EventArgs e)
 {

 }

 private void btnCalc_Click(object sender, EventArgs e)
 {
 //This is the code to trigger an action once the calculate button is clicked.
 //This will trigger the method called storeData to run.
 //The button is used to trigger an action in order to get the program to do something.
 //In this case the method storeData is used to store the data that has been entered by
the user.
 //This will then trigger the chkRate method calculation process of the program.
 storeData();
 }

 public void storeData()
 {
 //Try statement is used to encapsulate a region of code.
 //If any code throws an exception within that try block, the exception will be handled
by the corresponding catch statement.
 try
 {
 //This gets the data from the combo-box for the currency from.
 //And sets /stores it in the variable for the currency from.
 currencyFrom = cmbFrom.Text;

 //This gets the data from the combo-box for the currency To.
 //And sets /stores it in the variable for the currency To.
 currencyTo = cmbTo.Text;

 //This gets the amount entered in by the user and stores it into the variable
amount.
 amount = Convert.ToDecimal(txtEnter.Text);

 //This will trigger the method chkRate to run.
 chkRate();
 }
 //When an exception occurs, the Catch block of code is executed.
 //This is where the program is able to handle the exception.
 //When the incorrect type of data is input into the data boxes by the user, it will be
handled in the catch part of the statement.
 //The program will display the message box showing the message "Invalid user input".
 catch (Exception e)
 {

 MessageBox.Show("Invalid user input");
 }
 }

 public void chkRate()
 {
 //This is an if statement which tells the program that if the string (txtExchangeRate),
 //is null or empty, then the following conditions will be carried out.
 //A string is null if it has not been assigned a value.
 //A string is empty if it is explicitly assigned an empty string ("") or String.Empty.
 if (!string.IsNullOrEmpty(txtExchangeRate.Text))
 {
 //This converts the value of the data into a decimal datatype.
 exchangeRate = Convert.ToDecimal(txtExchangeRate.Text);

 //This triggers the updateRate method to run.
 updateRate();
 }
 //This is an else statement which tells the program what to do if the if statement
criteria has not been met.
 else
 {

 //This triggers the findExchangeRate method to run.
 findExchangeRate();
 }
 }

 public void updateRate()
 {
 //Here I have declared a variable called count within the updateRate method.
 //The variable has a datatype of int (meaning integer) with an initial value of 0.
 int count = 0;

 while (count < rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count, 0]) && (currencyTo.Equals(rateArray[count,
1])))
 {
 //Stores the exchange rate variable into the array.
 rateArray[count, 2]= exchangeRate.ToString();
 break;
 }
 //Increment count value by 1.
 count =(count + 1);

 //Triggers the calculate method to run.
 calculate();
 }
 }

 public void findExchangeRate()
 {
 //Here I have declared a variable called count within the findExchangeRate method.
 //The variable has a datatype of int (meaning integer) with an initial value of 0.
 int count = 0;

 while (count <= rateArray.GetUpperBound(0))
 {
 if (currencyFrom.Equals(rateArray[count, 0]) && (currencyTo.Equals(rateArray[count,
1])))
 {
 //Retrieves the value from the array using count.
 //It then converts the retrieved value datatype into another datatype (decimal).
 //It then stores it in the variable for the exchange rate.
 exchangeRate = Convert.ToDecimal(rateArray[count, 2]);
 break;
 }
 //Increment count value by 1.
 count = (count + 1);
 }
 //Triggers the calculate method to run.
 calculate();

 }

 public void calculate()
 {
 //Multiply the amount by the exchangeRate and display the answer in the result variable.
 result = amount * exchangeRate;

 //Trigger the calculate method to run.
 display();
 }

 public void display()
 {
 //Displays the result in the result text field.
 txtResult.Text = result.ToString();
 }

 private void btnClear_Click(object sender, EventArgs e)
 {

 }

 private void cmbFrom_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 private void cmbTo_SelectedIndexChanged(object sender, EventArgs e)
 {

 }
 }
}

User Interface

Altered Code
Description Code Before Alterations Altered Code Why I Altered This Code
This is test no 5
- 5.2, where I
checked that
the exchange
rate works
from GBP to
EURO.

 public void findExchangeRate()
 {
 //Here I have declared a variable
called count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

 exchangeRate =
Convert.ToDecimal(0);

 //Converts one datatype into
another datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

 After
public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <=
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the
array using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the
variable for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();

 }

I altered this code because, the
program kept crashing when I
pressed the calculate button when I
tried to test if the program could
calculate and display the exchange
rate from GBP to Euro.

The issue was that the program was
not retrieving the data from the array
and then executing the calculate
method, once I had placed these in
my code, the exchange rate worked.

This is test no 6
– 6.1, where I
checked that
the exchange

 public void findExchangeRate()
 {
 //Here I have declared a variable
called count within the findExchangeRate method.

public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.

I altered this code because, the
program kept crashing when I
pressed the calculate button when I
tried to test if the program could

rate works
from EURO to
GBP.

 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

 exchangeRate =
Convert.ToDecimal(0);

 //Converts one datatype into
another datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <=
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the
array using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the
variable for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();

 }

calculate and display the exchange
rate from EURO to GBP.

The issue was that the program was
not retrieving the data from the array
and then executing the calculate
method, once I had placed these in
my code, the exchange rate worked.

This is test no 7
– 7.1, where I
checked that
the exchange
rate works
from GBP to
AUD.

 public void findExchangeRate()
 {
 //Here I have declared a variable
called count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <=
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

I altered this code because, the
program kept crashing when I
pressed the calculate button when I
tried to test if the program could
calculate and display the exchange
rate from GBP to AUD.

The issue was that the program was
not retrieving the data from the array
and then executing the calculate
method, once I had placed these in
my code, the exchange rate worked.

 exchangeRate =
Convert.ToDecimal(0);

 //Converts one datatype into
another datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

 //Retrieves the value from the
array using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the
variable for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();

 }

This is test no 8
– 8.2, where I
checked that
the exchange
rate works
from AUD to
GBP.

 public void findExchangeRate()
 {
 //Here I have declared a variable
called count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

 exchangeRate =
Convert.ToDecimal(0);

 //Converts one datatype into
another datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }

public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <=
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the
array using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the
variable for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();

I altered this code because, the
program kept crashing when I
pressed the calculate button when I
tried to test if the program could
calculate and display the exchange
rate from AUD to GBP.

The issue was that the program was
not retrieving the data from the array
and then executing the calculate
method because I had not set the
count in the while statement to less
than or equal to, once I had placed
the equals sign next to the less than
sign in my code, the exchange rate
worked.

 }

 }

This is test no 9
– 9.1, where I
checked that
the exchange
rate works
from GBP to
USD.

 public void findExchangeRate()
 {
 //Here I have declared a variable
called count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

 exchangeRate =
Convert.ToDecimal(0);

 //Converts one datatype into
another datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <=
rateArray.GetUpperBound(0))
 {
 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the
array using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the
variable for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();

 }

I altered this code because, the
program kept crashing when I
pressed the calculate button when I
tried to test if the program could
calculate and display the exchange
rate from GBP to USD.

The issue was that the program was
not retrieving the data from the array
and then executing the calculate
method, once I had placed these in
my code, the exchange rate worked.

This is test no
10 – 10.1,
where I
checked that
the exchange
rate works
from USD to
GBP.

 public void findExchangeRate()
 {
 //Here I have declared a variable
called count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <
rateArray.GetUpperBound(0))
 {

public void findExchangeRate()
 {
 //Here I have declared a variable called
count within the findExchangeRate method.
 //The variable has a datatype of int
(meaning integer) with an initial value of 0.
 int count = 0;

 while (count <=
rateArray.GetUpperBound(0))
 {

I altered this code because, the
program kept crashing when I
pressed the calculate button when I
tried to test if the program could
calculate and display the exchange
rate from USD to GBP.

The issue was that the program was
not retrieving the data from the array
and then executing the calculate

 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {

 exchangeRate =
Convert.ToDecimal(0);

 //Converts one datatype into
another datatype.
 exchangeRate =
Convert.ToDecimal(txtExchangeRate.Text);

 Convert.ToDecimal(0);
 break;
 }
 count = (count + 1);
 }
 }

 if
(currencyFrom.Equals(rateArray[count, 0]) &&
(currencyTo.Equals(rateArray[count, 1])))
 {
 //Retrieves the value from the
array using count.
 //It then converts the retrieved
value datatype into another datatype (decimal).
 //It then stores it in the
variable for the exchange rate.
 exchangeRate =
Convert.ToDecimal(rateArray[count, 2]);

 break;
 }
 count = (count + 1);
 }
 calculate();

 }

method, once I had placed these in
my code, the exchange rate worked.

This is test no
11 – 11.1,
where I
checked invalid
user input
displays a
message box
when the user
enters the
wrong type of
data.

 public void storeData()
 {

 //This gets the data from the combo-
box for the currency from.
 //And sets /stores it in the
variable for the currency from.
 currencyFrom = cmbFrom.Text;

 //This gets the data from the combo-
box for the currency To.
 //And sets /stores it in the
variable for the currency To.
 currencyTo = cmbTo.Text;

 //This gets the amount entered in by
the user and stores it into the variable amount.
 amount =
Convert.ToDecimal(txtEnter.Text);

 //This will trigger the method
chkRate to run.
 chkRate();

 }

public void storeData()
 {
 try
 {

 //This gets the data from the combo-
box for the currency from.
 //And sets /stores it in the
variable for the currency from.
 currencyFrom = cmbFrom.Text;

 //This gets the data from the combo-
box for the currency To.
 //And sets /stores it in the
variable for the currency To.
 currencyTo = cmbTo.Text;

 //This gets the amount entered in by
the user and stores it into the variable amount.
 amount =
Convert.ToDecimal(txtEnter.Text);

 //This will trigger the method
chkRate to run.

I altered this code because, the
program kept crashing when I
entered the wrong data type into the
program.

The issue was that the program was
not displaying an error message box
to the user.

I altered the code to include a
try/catch statement which also
includes a message in a pop-up
message box. The message says
“Invalid user input”.

 chkRate();
 }
 catch (Exception e)
 {

 MessageBox.Show("Invald user
input");
 }

 }

Feedback
Name of Reviewer: James Saunders

Date of Review: 28/06/2018

Name of Program: Currency Exchange Calculator

Interface Reviewer-Good Reviewer-Bad Reviewers-
Comments

Programmers

Comment

Font (Size, Colour,
Contrast)

Font type was easy
to read on
background.

The labels are
not inlined with
boxes.

Adjust position. I disagree, the
labels are centre-
aligned with the
boxes and some of
the titles are longer
than others, this is
in-keeping with my
design and I wish to
keep them as they
are, as I do not feel
the reviewer has
given any valid
reason to suggest
otherwise.

English (Spelling,
Grammar, Capitals etc)

All good. Nothing bad. Nothing to
change.

Happy with the
feedback.

Background Colours look good
together.

The background
is a little plain,
could do with
some brighter
colours.

Possibly change
the colours to
something
brighter.

I disagree, the
program is to be
used to
functionality and
usability purposes, I
feel the visual look
is fairly irrelevant
and the colours are
fairly standard. I like
the grey
background with
the accents of
green, I didn’t want
to use blue which is
the most used
colour in programs
and I felt a white

background was too
plain.

Layout (textboxes,
labels, buttons, combo
boxes

Simple and logical. Labels not
consistently
placed.

Adjust position. The labels are
consistently placed,
I do not understand
what the reviewer
is talking about.

Easy of Use It is very easy to use. Clear button not
functioning.

And when
exchanging
currencies:
AUD – AUD, AUD
– EURO, AUD –
USD, GBP – GBP,
GBP, USD – USD,
USD – AUD, USD
– EURO, EURO –
EURO, EURO –
AUD, EURO –
USD, these
choices do not
display the
answer to the
user.

Program the clear
function.

Program the rest
of the currencies
to display the
answer to the
user.

I plan to complete
these in my
refinements of the
program.

Program Structure
Quality

Comments to help read
the code

Well commented
throughout.

Nothing. Can’t suggest
improvements.

Happy with this
feedback.

Indentation Easy to follow. Nothing. Nothing. Happy with this
feedback.

Method names are
meaningful

Yes, easy to
understand.

Nothing. Nothing. Happy with this
feedback.

Variable names
meaningful

Yes, explains its use
just from the name.

Nothing. Nothing. Happy with this
feedback.

Easy to read code Yes, easy to follow
structure.

Unneeded
events in code.

Remove
unneeded code.

Happy with this
feedback.

Functionality

Exchange Rate correctly
worked

Works correctly. When
exchanging
currencies:
AUD – AUD, AUD
– EURO, AUD –
USD, GBP – GBP,

Add extra
exchange rates.

Happy with this
feedback, changed
will be made in the
refinements.

GBP, USD – USD,
USD – AUD, USD
– EURO, EURO –
EURO, EURO –
AUD, EURO –
USD, these
choices do not
display the
answer to the
user.

Result of Calculation
formatted

Result shown
correctly.

Too many zeros
showing in the
result.

Limit the number
of zeros to 2
decimal places.

I am happy with this
feedback, and the
changes will be
made during
refinements.

Other N/A N/A N/A Nothing to
comment on.

Quality

Easy to use Easy to use N/A N/A Happy with the
feedback.

Robust (works every
time)

Program works
without crashing,
when the data type
is invalid and
displays a message
box.

And when
exchanging
currencies:
AUD – AUD, AUD
– EURO, AUD –
USD, GBP – GBP,
GBP, USD – USD,
USD – AUD, USD
– EURO, EURO –
EURO, EURO –
AUD, EURO –
USD, these
choices do not
display the
answer to the
user.

Add extra
calculations.

Happy with the
feedback, I plan to
make these changes
in the refinements.

Reliable(produces

Correct answers)

Works fine And when
exchanging
currencies:
AUD – AUD, AUD
– EURO, AUD –
USD, GBP – GBP,
GBP, USD – USD,
USD – AUD, USD
– EURO, EURO –
EURO, EURO –

Add extra
calculations.

Happy with the
feedback, as I have
said, I plan to make
these changes in
the refinements.

AUD, EURO –
USD, these
choices do not
display the
answer to the
user.

Name of Reviewer: Harry Blair

Date of Review: 28/06/18

Name of Program: Currency Exchange Calculator

Interface Reviewer-Good Reviewer-Bad Reviewers-
Comments

Programmers

Comment

Font (Size, Colour,
Contrast)

The font blended in
with the design of
the app and brought
the simplicity of the
navigation and use
of the app.

No bad things. No adjusting
comment.

I am very content
with this feedback.

English (Spelling,
Grammar, Capitals etc)

All the grammar,
works in conjunction
with their
corresponding
combobox and
textbox.

The spelling of
the title, mainly
‘The Exhange
Calculator’, is
spelt incorrectly.

Fix the spelling of
the title for your
app.

I am very happy
with this feedback.
And I plan to
change this.

Background I like the
background colour
and it works super
effectively with the
surrounding colours.

No bad things. No adjusting
comment.

I am very pleased
with this feedback.

Layout (textboxes,
labels, buttons, combo
boxes

The layout of the
app is of the highest
quality and looks
proficient and
professional.

No bad things. No adjusting
comment.

I am very happy
with this feedback.

Easy of Use The app is very easy
to navigate around
and is very simplistic
to use.

No bad things. No adjusting
comment.

I am very happy
with this feedback.

Program Structure
Quality

Comments to help read
the code

Comments are
accurate and
precise, whilst
helping the user to
understand the
code.

No bad things. No adjusting
comment.

I am very pleased
with this feedback.

Indentation Indentation is good. No bad things. No adjusting
comment.

I am very pleased
with this feedback.

Method names are
meaningful

Method names are
good and correlates
correctly.

No bad things. No adjusting
comment.

I am very happy
with this feedback.

Variable names
meaningful

Variable names are
good and are
meaningful.

No bad things. No adjusting
comment.

I am content with
this feedback.

Easy to read code Code is laid out
neatly and visible.

No bad things. No adjusting
comment.

I am happy with this
feedback.

Functionality

Exchange Rate correctly
worked

Exchange rate works
correctly.

Clear button
doesn’t work
and some of the
exchange rates
don’t:
AUD – AUD, AUD
– EURO, AUD –
USD, GBP – GBP,
GBP, USD – USD,
USD – AUD, USD
– EURO, EURO –
EURO, EURO –
AUD, EURO –
USD.

Clear button
needs to be fixed.

The currencies in
your array need
to be added in.

I plan to complete
these in my
refinements of the
program.

Result of Calculation
formatted

Results on the
calculator works and
is very fun to use.

No bad things. No adjusting
comment.

I am very happy
with this feedback.

Other No other comments No bad things. No adjusting
comment.

Nothing to
comment on.

Quality

Easy to use The navigation is
easy to use and very
simplistic.

No bad things. No adjusting
comment.

I am very happy
with this feedback.

Robust (works every
time)

The calculator
works.

No bad things. No adjusting
comment.

I am very pleased
with this feedback.

Reliable(produces

Correct answers)

The answers are
correct and reliable.

No bad things. No adjusting
comment.

I am very content
with this feedback.

Improvements
What I changed and why I made
these changes

Before Screenshot After Screenshot

I originally planned to have a
clear button but decided against
it due to the fact that I didn’t
know how to code it.

However, after the feedback I
received, I decided to research
how to code the clear button and
find out that it was relatively
straight-forward to implement.

 I basically just researched how
to clear a combo box and a text
box and simply entered the
names of the text boxes and
added .clear(); to the end of each
one to instruct it to clear. For the
combo-boxes, I again entered the
names of the two combo boxes
and added .Text = “ ”; which
instructs the combo boxes to
clear.

Task 4

Review Original Requirements P6
The client (a local travel agent) requested we design and develop a currency exchange rate calculator to calculate the rates for its customers. The program has to allow the user to
enter an amount in British pounds and calculate the equivalent amount in a foreign currency (such as Australian Dollars). The program should then allow the user to enter an
amount in a foreign currency (such as USD, United States Dollars) and calculate the equivalent amount into British pounds. The user must be also be able to update the exchange
rates and the exchanged amount must be shown alongside the exchange rate.

As shown in the screenshot above, the user can enter an amount into the “Enter Amount” text box. The user is then able to select the currency to exchange from and to via the
combo selection boxes. The user has a choice of four currencies AUD, EURO, GBP and USD to exchange from and to, this fulfils the requirement for at least three different
currencies as requested in the client’s briefing. Once the calculate button is pressed, the calculation result is shown in the result text box and the exchange rate used in the
calculation is displayed in the exchange rate text box as requested by the client. In the test log the program was tested and screenshot evidence was provided to show the
individual tests that were made to show the program functions as it was originally meant to. The program fulfils the requirements and purpose stated in the brief made by the client
by providing an accurate calculation of the exchange rate with the full functions available to the user. It also contains a clear button for additional functionality, by clearing the
entered data ready for the next user.

	Introduction
	Purpose of the Program
	Problem Definition
	Requirements
	Input Requirements
	Process Requirements
	Output Requirements
	Business Requirements (Non-Functional Requirements)

	Solutions
	Bespoke Software
	Off-The-Shelf Software
	Customisable Software

	Designs
	GUI Designs
	Introduction
	1st Design
	2nd Design

	Components Table for 1st Design
	Components Table for 2nd Design
	Navigation for 1st Design
	Navigation for 2nd Design
	Implemented Requirements for 1st Design
	Input
	Process
	Output

	Implemented Requirements for 2nd Design
	Input
	Process
	Output

	Data Validation for 1st Design
	Data Validation for 2nd Design
	Data Dictionary
	Introduction
	What is a variable?
	Size of a variable

	Processes
	Store User Data
	Update Exchange Rate (optional)
	Find the Current Exchange Rate
	Calculate Exchanged Amount
	Display Result
	Reset/Clear Data

	Flow Chart
	What is an algorithm?
	What is a flowchart?
	What does a flowchart show?
	Why is a flowchart important in programming?

	Test Plan
	Justifications
	Task 3
	Original Code
	Test Log
	Updated Code
	User Interface
	Altered Code
	Feedback
	Improvements
	Task 4
	Review Original Requirements P6

